Differential activation of focal adhesion kinase, Rho and Rac by the ninth and tenth FIII domains of fibronectin

Author:

Hotchin N.A.1,Kidd A.G.1,Altroff H.1,Mardon H.J.1

Affiliation:

1. School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Abstract

Fibronectins are widely expressed extracellular matrix ligands that are essential for many biological processes. Fibronectin-induced signaling pathways are elicited in diverse cell types when specific integrin receptors bind to the ninth and tenth FIII domains, FIII9-10. Integrin-mediated signal transduction involves activation of signaling pathways of the growth factor-dependent Ras-related small GTP-binding proteins Rho and Rac, and phosphorylation of focal adhesion kinase. We have dissected the requirement of FIII9 and FIII10 for Rho and Rac activity and phosphorylation of focal adhesion kinase in BHK fibroblasts and Swiss 3T3 cells. We demonstrate that FIII10 supports cell attachment but does not induce phosphorylation of focal adhesion kinase. In Swiss 3T3 cells, growth factor-independent phosphorylation of focal adhesion kinase and downstream adhesion events are dependent upon the presence of FIII9 in the intact FIII9-10 pair, whereas FIII10-mediated focal adhesion kinase phosphorylation requires a synergistic signal from growth factors. Furthermore, FIII10 is able to elicit cellular responses mediated by Rho, but not Rac, whereas FIII9-10 can elicit both Rho- and Rac-mediated responses. We propose that activation of specific integrin subunits by the FIII10 and FIII9-10 ligands elicits distinct signaling events. This may represent a general molecular mechanism for activation of receptor-specific signaling pathways by a multi-domain ligand.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3