Microtubule dynamic instability: numerical simulation of microtubule transition properties using a Lateral Cap model

Author:

Bayley P.M.1,Schilstra M.J.1,Martin S.R.1

Affiliation:

1. Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London, England.

Abstract

We present a numerical formulation for the dynamic instability of microtubules involving the stabilisation of growing microtubules by a single layer of tubulin-GTP, with GTP hydrolysis effectively coupled to tubulin-GTP addition. This Lateral Cap model provides a readily visualised, working mechanism for the co-existence and interconversion of growing and shrinking microtubules. This class of model is specified in terms of a hydrolysis rule, whereby the addition of tubulin-GTP causes hydrolysis of GTP on a previously terminal tubulin-GTP molecule as it becomes incorporated into the microtubule lattice. A specific formulation is illustrated, though this is not unique. A limited set of parameters defines the kinetics and affinity for tubulin-GTP at the binding sites at a given end of the microtubule. The rate constants are a function of the nucleotide composition of the binding site, principally comprising the two tubulin molecules, which interact laterally and longitudinally with the incoming tubulin-GTP molecule. The Lateral Cap formulation demonstrates that a single terminal layer of tubulin-GTP is sufficient to reproduce the apparently complex behaviour of a dynamic population of microtubules. It differs significantly from the fluctuating tubulin-GTP cap model of Chen and Hill (1985). It gives a molecular description to the switching of individual microtubules between growing and shrinking states in terms of the composition of the multi-start terminal layer of the microtubule, and provides a general mechanism for the differential kinetic behaviour at opposite ends of dynamic microtubules. It reproduces the essential features of microtubule length excursions, and predicts detailed characteristics of microtubule dynamics, including the basis of the apparently cooperative nature of the transition behaviour as a function of the concentration of tubulin-GTP. It is readily amenable to further experimental test and refinement.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3