Computer simulation reveals the effect of severing enzymes on dynamic and stabilized microtubules

Author:

Sen AritraORCID,Kunwar AmbarishORCID

Abstract

Abstract Microtubule (MT) severing enzymes Katanin and Spastin cut the MT into smaller fragments and are being studied extensively using in-vitro experiments due to their crucial role in different cancers and neurodevelopmental disorders. It has been reported that the severing enzymes are either involved in increasing or decreasing the tubulin mass. Currently, there are a few analytical and computational models for MT amplification and severing. However, these models do not capture the action of MT severing explicitly, as these are based on partial differential equations in one dimension. On the other hand, a few discrete lattice-based models were used earlier to understand the activity of severing enzymes only on stabilized MTs. Hence, in this study, discrete lattice-based Monte Carlo models that included MT dynamics and severing enzyme activity have been developed to understand the effect of severing enzymes on tubulin mass, MT number, and MT length. It was found that the action of severing enzyme reduces average MT length while increasing their number; however, the total tubulin mass can decrease or increase depending on the concentration of GMPCPP (Guanylyl-(α, β)-methylene-diphosphonate)—which is a slowly hydrolyzable analogue of GTP (Guanosine triphosphate). Further, relative tubulin mass also depends on the detachment ratio of GTP/GMPCPP and Guanosine diphosphate tubulin dimers and the binding energies of tubulin dimers covered by the severing enzyme.

Funder

Council of Scientific and Industrial Research, India

Publisher

IOP Publishing

Subject

Cell Biology,Molecular Biology,Structural Biology,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3