Multipotent stem cells in the Malpighian tubules of adultDrosophila melanogaster

Author:

Singh Shree Ram1,Hou Steven X.1

Affiliation:

1. Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA

Abstract

SUMMARYExcretion is an essential process of an organism's removal of the waste products of metabolism to maintain a constant chemical composition of the body fluids despite changes in the external environment. Excretion is performed by the kidneys in vertebrates and by Malpighian tubules (MTs) in Drosophila. The kidney serves as an excellent model organ to investigate the cellular and molecular mechanisms underlying organogenesis. Mammals and Drosophila share common principles of renal development. Tissue homeostasis, which is accomplished through self-renewal or differentiation of stem cells, is critical for the maintenance of adult tissues throughout the lifetime of an animal. Growing evidence suggests that stem cell self-renewal and differentiation is controlled by both intrinsic and extrinsic factors. Deregulation of stem cell behavior results in cancer formation, tissue degeneration, and premature aging. The mammalian kidney has a low rate of cellular turnover but has a great capacity for tissue regeneration following an ischemic injury. However, there is an ongoing controversy about the source of regenerating cells in the adult kidney that repopulate injured renal tissues. Recently, we identified multipotent stem cells in the MTs of adult Drosophila and found that these stem cells are able to proliferate and differentiate in several types of cells in MTs. Furthermore, we demonstrated that an autocrine JAK-STAT (Janus kinase–signal transducers and activators of transcription) signaling regulates stem cell self-renewal or differentiation of renal stem cells. The Drosophila MTs provide an excellent in vivo system for studying the renal stem cells at cellular and molecular levels. Understanding the molecular mechanisms governing stem cell self-renewal or differentiation in vivo is not only crucial to using stem cells for future regenerative medicine and gene therapy, but it also will increase our understanding of the mechanisms underlying cancer formation, aging and degenerative diseases. Identifying and understanding the cellular processes underlying the development and repair of the mammalian kidney may enable more effective, targeted therapies for acute and chronic kidney diseases in humans.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3