A mobility-based classification of closed kinematic chains in biomechanics and implications for motor control

Author:

Olsen Aaron M.1ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA

Abstract

ABSTRACT Closed kinematic chains (CKCs), links connected to form one or more closed loops, are used as simple models of musculoskeletal systems (e.g. the four-bar linkage). Previous applications of CKCs have primarily focused on biomechanical systems with rigid links and permanently closed chains, which results in constant mobility (the total degrees of freedom of a system). However, systems with non-rigid elements (e.g. ligaments and muscles) and that alternate between open and closed chains (e.g. standing on one foot versus two) can also be treated as CKCs with changing mobility. Given that, in general, systems that have fewer degrees of freedom are easier to control, what implications might such dynamic changes in mobility have for motor control? Here, I propose a CKC classification to explain the different ways in which mobility of musculoskeletal systems can change dynamically during behavior. This classification is based on the mobility formula, taking into account the number of loops in the CKC and the nature of the constituent joint mobilities. I apply this mobility-based classification to five biomechanical systems: the human lower limbs, the operculum–lower jaw mechanism of fishes, the upper beak rotation mechanism of birds, antagonistic muscles at the human ankle joint and the human jaw processing a food item. I discuss the implications of this classification, including that mobility itself may be dynamically manipulated to simplify motor control. The principal aim of this Commentary is to provide a framework for quantifying mobility across diverse musculoskeletal systems to evaluate its potentially key role in motor control.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3