Motor Skill Acquisition Under Environmental Perturbations: On the Necessity of Alternate Freezing and Freeing of Degrees of Freedom

Author:

Berthouze Luc,Lungarella Max1

Affiliation:

1. Neuroscience Research Institute, Tsukuba, Japan

Abstract

In a recent study on the pendulation of a small-sized humanoid robot (Lungarella & Berthouze, 2002a, b), we provided experimental evidence that starting with fewer degrees of freedom enables a more efficient exploration of the sensorimotor space during the acquisition of a task. The study came as support for the well-established framework of Bernstein (1967), namely that of an initial freezing of the distal degrees of freedom, followed by their progressive release and the exploitation of environmental and body dynamics. In this paper, we revisit our study by introducing a nonlinear coupling between environment and system. Under otherwise unchanged experimental conditions, we show that a single phase of freezing and subsequent freeing of degrees of freedom is not sufficient to achieve optimal performance, and instead, alternate freezing and freeing of degrees of freedom is required. The interest of this result is twofold: (1) it confirms the recent observation by Newell & Vaillancourt (2001) that Bernstein’s (1967) framework may be too narrow to account for real data; (2) it suggests that perturbations that push the system outside its postural stability or increase the task complexity may be the mechanism that triggers alternate freezing and freeing of degrees of freedom.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3