Phenotypic plasticity in response to dietary salt stress: Na+ and K+ transport by the gut ofDrosophila melanogasterlarvae

Author:

Naikkhwah Wida1,O'Donnell Michael J.1

Affiliation:

1. Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada

Abstract

SUMMARYDrosophila provides a useful model system for studies of the mechanisms involved in regulation of internal ion levels in response to variations in dietary salt load. This study assessed whether alterations in Na+ and K+ transport by the gut of larval D. melanogaster reared on salt-rich diets contribute to haemolymph ionoregulation. Na+ and K+ fluxes across the isolated guts of third instar larvae reared on control or salt-rich diets were measured using the scanning ion-selective electrode technique (SIET). K+ absorption across the anterior portion of the posterior midgut of larvae reared on diet in which the concentration of KCl was increased 0.4 mol l-1 above that in the control diet was reduced eightfold relative to the same gut segment of larvae reared on the control diet. There was also an increase in the magnitude and extent of K+ secretion across the posterior half of the posterior midgut. Na+ was absorbed across the ileum of larvae reared on the control diet, but was secreted across the ileum of larvae reared on diet in which the concentration of NaCl was increased 0.4 mol l-1 above that in the control diet. There was also a small reduction in the extent of Na+ absorption across the middle midgut of larvae reared on the NaCl-rich diet. The results indicate considerable phenotypic plasticity with respect to K+ and Na+ transport by the gut epithelia of larval D. melanogaster. SIET measurements of K+ and Na+ fluxes along the length of the gut show that ion transport mechanisms of the gut are reconfigured during salt stress so that there are reductions in K+ and Na+ absorption and increases in K+ and Na+ secretion. Together with previously described changes in salt secretion by the Malpighian tubules, these changes contribute to haemolymph ionoregulation.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3