Continuous association of cadherin with β-catenin requires the non-receptor tyrosine-kinase Fer

Author:

Xu Gang1,Craig Andrew W. B.2,Greer Peter3,Miller Matthew1,Anastasiadis Panos Z.4,Lilien Jack1,Balsamo Janne1

Affiliation:

1. Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA

2. Department of Biochemistry, Room 641 Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada

3. Department of Pathology, Division of Cancer Biology and Genetics, Room A309 Botterell Hall, Queen's University Cancer Research Institute, Kingston, Ontario, K7L 3N6, Canada

4. Laboratory of Cell Adhesion and Metastasis, Mayo Clinic, Griffin Cancer Research Building, 4500 San Pablo Road, Jacksonville, FL 32224, USA

Abstract

The function of Type 1, classic cadherins depends on their association with the actin cytoskeleton, a connection mediated by α- and β-catenin. The phosphorylation state of β-catenin is crucial for its association with cadherin and thus the association of cadherin with the cytoskeleton. We now show that the phosphorylation of β-catenin is regulated by the combined activities of the tyrosine kinase Fer and the tyrosine phosphatase PTP1B. Fer phosphorylates PTP1B at tyrosine 152, regulating its binding to cadherin and the continuous dephosphorylation of β-catenin at tyrosine 654. Fer interacts with cadherin indirectly, through p120ctn. We have mapped the interaction domains of Fer and p120ctn and peptides corresponding to these sequences release Fer from p120ctn in vitro and in live cells, resulting in loss of cadherin-associated PTP1B, an increase in the pool of tyrosine phosphorylated β-catenin and loss of cadherin adhesion function. The effect of the peptides is lost when a β-catenin mutant with a substitution at tyrosine 654 is introduced into cells. Thus, Fer phosphorylates PTP1B at tyrosine 152 enabling it to bind to the cytoplasmic domain of cadherin, where it maintains β-catenin in a dephosphorylated state. Cultured fibroblasts from mouse embryos targeted with a kinase-inactivating ferD743R mutation have lost cadherin-associated PTP1B and β-catenin, as well as localization of cadherin and β-catenin in areas of cell-cell contacts. Expression of wild-type Fer or culture in epidermal growth factor restores the cadherin complex and localization at cell-cell contacts.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3