Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival

Author:

Kotkamp Kay1,Klingler Martin1,Schoppmeier Michael1

Affiliation:

1. Department of Biology, Developmental Biology Unit, Erlangen University, Staudstrasse 5, 90158 Erlangen, Germany.

Abstract

In the short-germ beetle Tribolium castaneum, the head gap gene orthodenticle (Tc-otd) has been proposed to functionally substitute for bicoid, the anterior morphogen unique to higher dipterans. In this study we reanalyzed the function of Tc-otd. We obtained a similar range of cuticle phenotypes as in previously described RNAi experiments; however, we noticed unexpected effects on blastodermal cell fates. First, we found that Tc-otd is essential for dorsoventral patterning. RNAi depletion results in lateralized embryos, a fate map change that by itself can explain the observed loss of the anterior head, which is a ventral anlage in Tribolium. We find that this effect is due to diminished expression of short gastrulation (sog), a gene essential for establishment of the Decapentaplegic (Dpp) gradient in this species. Second, we found that gnathal segment primordia in Tc-otd RNAi embryos are shifted anteriorly but otherwise appear patterned normally. This anteroposterior (AP) fate map shift might largely be due to diminished zen-1 expression and is not responsible for the severe segmentation defects observed in some Tc-otd RNAi embryos. As neither Tc-sog nor Tc-zen-1 probably requires Otd gradient-mediated positional information, we posit that the blastoderm function of Tc-Otd depends on its initial homogeneous maternal expression and that this maternal factor does not provide significant positional information for Tribolium blastoderm embryos.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3