Affiliation:
1. Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
Abstract
Understanding how individuals detect and recognize signals emitted by conspecifics is fundamental to discussions of animal communication. The species pair Gymnotus omarorum and Brachyhypopomus gauderio, found in syntopy in Uruguay, emit species-specific electric organ discharges that can be sensed by both species. The aim of this study was to unveil whether either of these species are able to identify a conspecific electric organ discharge, and to investigate distinctive recognition signal features. We designed a forced-choice experiment using a natural behavior (i.e. tracking electric field lines towards their source) in which each fish had to choose between a conspecific and a heterospecific electric field. We found a clear pattern of preference for a conspecific waveform even when pulses were played within 1 Hz of the same rate. By manipulating the time course of the explored signals, we found that the signal features for preference between conspecific and heterospecific waveforms were embedded in the time course of the signals. This study provides evidence that pulse Gymnotiformes can recognize a conspecific exclusively through species-specific electrosensory signals. It also suggests that the key signal features for species differentiation are probably encoded by burst coder electroreceptors. Given these results, and because receptors are sharply tuned to amplitude spectra and also tuned to phase spectra, we extend the electric color hypothesis used in evaluation of objects to apply to communication signals.
Funder
Agencia Nacional de Investigación e Innovación
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献