Electroreception inG. carapo: detection of changes in waveform of the electrosensory signals

Author:

Aguilera Pedro A.1,Caputi Angel A.1

Affiliation:

1. Departamento de Neurofisiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Unidad Asociada a Facultad de Ciencias, Universidad de la República, Av. Italia 3318, Montevideo,Uruguay

Abstract

SUMMARYElectric fish evaluate the near environment by detecting changes in their self-generated electric organ discharge. To investigate impedance modulation of the self-generated electric field, this field was measured at the electrosensory fovea of Gymnotus carapo in the presence and absence of objects. Changes in local fields provoked by resistive objects were predicted by the change in total energy. Objects with capacitive impedance generated large variations in the relative importance of the different waveform components of the electric organ discharge. We tested the hypothesis that fish discriminate changes in waveform as well as increases in total energy using the novelty response, which is a behavioural response consisting of a transient acceleration of EOD frequency that can follow a change in object impedance. For resistive loads, the amplitude of novelty responses was well predicted by the increase in total energy. For complex loads, the amplitude of novelty responses was correlated not only with increases in total energy but also with waveform changes, consisting of reductions in the early slow negative wave and increases in the late sharp negative wave. The total energy and waveform effects appeared to be additive. These results indicate that G. carapo discriminates complex impedance based on an evaluation of different waveform parameters.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3