The evolutionary biomechanics of locomotor function in giant land animals

Author:

Hutchinson John R.1ORCID

Affiliation:

1. Structure & Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA,UK

Abstract

ABSTRACT Giant land vertebrates have evolved more than 30 times, notably in dinosaurs and mammals. The evolutionary and biomechanical perspectives considered here unify data from extant and extinct species, assessing current theory regarding how the locomotor biomechanics of giants has evolved. In terrestrial tetrapods, isometric and allometric scaling patterns of bones are evident throughout evolutionary history, reflecting general trends and lineage-specific divergences as animals evolve giant size. Added to data on the scaling of other supportive tissues and neuromuscular control, these patterns illuminate how lineages of giant tetrapods each evolved into robust forms adapted to the constraints of gigantism, but with some morphological variation. Insights from scaling of the leverage of limbs and trends in maximal speed reinforce the idea that, beyond 100–300 kg of body mass, tetrapods reduce their locomotor abilities, and eventually may lose entire behaviours such as galloping or even running. Compared with prehistory, extant megafaunas are depauperate in diversity and morphological disparity; therefore, turning to the fossil record can tell us more about the evolutionary biomechanics of giant tetrapods. Interspecific variation and uncertainty about unknown aspects of form and function in living and extinct taxa still render it impossible to use first principles of theoretical biomechanics to tightly bound the limits of gigantism. Yet sauropod dinosaurs demonstrate that >50 tonne masses repeatedly evolved, with body plans quite different from those of mammalian giants. Considering the largest bipedal dinosaurs, and the disparity in locomotor function of modern megafauna, this shows that even in terrestrial giants there is flexibility allowing divergent locomotor specialisations.

Funder

European Research Council Horizon 2020

British Biotechnology and Biological Sciences Research Council

Natural Environment Research Council

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference196 articles.

1. Allometry of the limbs of antelopes (Bovidae);Alexander;J. Zool.,1977

2. Forces in animal joints;Alexander;Eng. Med.,1980

3. The maximum forces exerted by animals;Alexander;J. Exp. Biol.,1985

4. Mechanics of posture and gait of some large dinosaurs;Alexander;Zool. J. Linn. Soc.,1985

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3