The biomechanics of tree frogs climbing curved surfaces: a gripping problem

Author:

Hill Iain D. C.1,Dong Benzheng2,Barnes W. Jon. P.1ORCID,Ji Aihong2,Endlein Thomas3ORCID

Affiliation:

1. Centre for Cell Engineering, University of Glasgow; Joseph Black Building, University Avenue, Glasgow G12 8QQ, Scotland, U.K.

2. Institute of Bioinspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China

3. Max Planck Institute for Intelligent Systems, Heisenbergstraβe 3, 70569 Stuttgart, Germany

Abstract

The adhesive mechanisms of climbing animals have become an important research topic because of their biomimetic implications. We examined the climbing abilities of hylid tree frogs on vertical cylinders of differing diameter and surface roughness to investigate the relative roles of adduction forces (gripping) and adhesion. Tree frogs adhere using their toe pads and subarticular tubercles, the adhesive joint being fluid-filled. Our hypothesis was that, on an effectively flat surface (adduction forces on the largest 120 mm diameter cylinder were insufficient to allow climbing), adhesion would effectively be the only means by which tree frogs could climb, but on the two smaller diameter cylinders (44 mm and 13 mm), frogs could additionally utilise adduction forces by gripping the cylinder either with their limbs outstretched or by grasping around the cylinder with their digits, respectively. The frogs’ performance would also depend on whether the surfaces were smooth (easy to adhere to) or rough (relatively non-adhesive). Our findings showed that climbing performance was highest on the narrowest smooth cylinder. Frogs climbed faster, frequently using a ‘walking trot’ gait rather than the ‘lateral sequence walk’ used on other cylinders. Using an optical technique to visualize substrate contact during climbing on smooth surfaces, we also observed an increasing engagement of the subarticular tubercles on the narrower cylinders. Finally, on the rough substrate, frogs were unable to climb the largest diameter cylinder, but were able to climb the narrowest one slowly. These results support our hypotheses and have relevance for the design of climbing robots.

Funder

Royal Society

National Natural Science Foundation of China

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3