Affiliation:
1. Department of Ecology & Evolutionary Biology, Brown University, Providence, RI 02912, USA
Abstract
ABSTRACT
Arboreal animals often move on compliant branches, which may deform substantially under loads, absorbing energy. Energy stored in a compliant substrate may be returned to the animal or it may be lost. In all cases studied so far, animals jumping from a static start lose all of the energy imparted to compliant substrates and performance is reduced. Cuban tree frogs (Osteopilus septentrionalis) are particularly capable arboreal jumpers, and we hypothesized that these animals would be able to recover energy from perches of varying compliance. In spite of large deflections of the perches and consequent substantial energy absorption, frogs were able to regain some of the energy lost to the perch during the recoil. Takeoff velocity was robust to changes in compliance, but was lower than when jumping from flat surfaces. This highlights the ability of animals to minimize energy loss and maintain dependable performance on challenging substrates via behavioral changes.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献