Deep learning is widely applicable to phenotyping embryonic development and disease

Author:

Naert Thomas1ORCID,Çiçek Özgün2,Ogar Paulina1,Bürgi Max1,Shaidani Nikko-Ideen3,Kaminski Michael M.45ORCID,Xu Yuxiao6,Grand Kelli1,Vujanovic Marko1,Prata Daniel1,Hildebrandt Friedhelm7,Brox Thomas2,Ronneberger Olaf289,Voigt Fabian F.10,Helmchen Fritjof10,Loffing Johannes1,Horb Marko E.3,Willsey Helen Rankin6ORCID,Lienkamp Soeren S.1ORCID

Affiliation:

1. Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich 8057, Switzerland

2. Department of Computer Science, Albert-Ludwigs-University, Freiburg 79100, Germany

3. National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA

4. Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany

5. Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin 10117, Germany

6. Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA

7. Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115,USA

8. BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany

9. DeepMind, London WC2H 8AG , UK

10. Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich, Zurich 8057, Switzerland

Abstract

ABSTRACT Genome editing simplifies the generation of new animal models for congenital disorders. However, the detailed and unbiased phenotypic assessment of altered embryonic development remains a challenge. Here, we explore how deep learning (U-Net) can automate segmentation tasks in various imaging modalities, and we quantify phenotypes of altered renal, neural and craniofacial development in Xenopus embryos in comparison with normal variability. We demonstrate the utility of this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). We highlight how in toto light-sheet microscopy facilitates accurate reconstruction of brain and craniofacial structures within X. tropicalis embryos upon dyrk1a and six1 loss of function or treatment with retinoic acid inhibitors. These tools increase the sensitivity and throughput of evaluating developmental malformations caused by chemical or genetic disruption. Furthermore, we provide a library of pre-trained networks and detailed instructions for applying deep learning to the reader's own datasets. We demonstrate the versatility, precision and scalability of deep neural network phenotyping on embryonic disease models. By combining light-sheet microscopy and deep learning, we provide a framework for higher-throughput characterization of embryonic model organisms. This article has an associated ‘The people behind the papers’ interview.

Funder

H2020 Marie Skłodowska-Curie Actions

Deutsche Forschungsgemeinschaft

National Institutes of Health

Overlook International Foundation

National Institutes of Mental Health Convergent Neuroscience Initiative

Psychiatric Cell Map Initiative

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Swiss National Centre of Competence in Research Kidney Control of Homeostasis

Horizon 2020 Framework Programme

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3