Deep learning enables automated volumetric assessments of cardiac function in zebrafish

Author:

Akerberg Alexander A.123ORCID,Burns Caroline E.1234ORCID,Burns C. Geoffrey123,Nguyen Christopher125ORCID

Affiliation:

1. Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA

2. Harvard Medical School, Boston, MA 02115, USA

3. Boston Children's Hospital, Boston, MA 02115, USA

4. Harvard Stem Cell Institute, Cambridge, MA 02138,USA

5. Athinoula A Martinos Center for Biomedical Imaging, Charlestown, MA 02129,USA

Abstract

Although the zebrafish embryo is a powerful animal model of human heart failure, the methods routinely employed to monitor cardiac function produce rough approximations that are susceptible to bias and inaccuracies. We developed and validated CFIN (cardiac functional imaging network), a deep learning-based image analysis platform for automated extraction of volumetric parameters of cardiac function from dynamic light sheet fluorescence microscopy images of embryonic zebrafish hearts. CFIN automatically delivers rapid and accurate assessments of cardiac performance with greater sensitivity than current approaches.

Funder

National Institutes of Health

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3