STAVOS: A Medaka Larval Cardiac Video Segmentation Method Based on Deep Learning

Author:

Zeng Kui1,Xu Shutan1,Shu Daode1,Chen Ming1ORCID

Affiliation:

1. Key Laboratory of Fisheries Information, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China

Abstract

Medaka (Oryzias latipes), as a crucial model organism in biomedical research, holds significant importance in fields such as cardiovascular diseases. Currently, the analysis of the medaka ventricle relies primarily on visual observation under a microscope, involving labor-intensive manual operations and visual assessments that are cumbersome and inefficient for biologists. Despite attempts by some scholars to employ machine learning methods, limited datasets and challenges posed by the blurred edges of the medaka ventricle have constrained research to relatively simple tasks such as ventricle localization and heart rate statistics, lacking precise segmentation of the medaka ventricle edges. To address these issues, we initially constructed a video object segmentation dataset comprising over 7000 microscopic images of medaka ventricles. Subsequently, we proposed a semi-supervised video object segmentation model named STAVOS, incorporating a spatial-temporal attention mechanism. Additionally, we developed an automated system capable of calculating various parameters and visualizing results for a medaka ventricle using the provided video. The experimental results demonstrate that STAVOS has successfully achieved precise segmentation of medaka ventricle contours. In comparison to the conventional U-Net model, where a mean accuracy improvement of 0.392 was achieved, our model demonstrates significant progress. Furthermore, when compared to the state-of-the-art Tackling Background Distraction (TBD) model, there is an additional enhancement of 0.038.

Funder

Research and Development Planning in Key Areas of Guangdong Province

Bioinformatics Research and Database Construction of Antifreeze Genes in Fish

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3