Thyroid hormone regulates muscle function during cold acclimation in zebrafish (Danio rerio)

Author:

Little Alexander G.1,Seebacher Frank1

Affiliation:

1. School of Biological Sciences, A08 University of Sydney, NSW 2006, Australia

Abstract

SUMMARY Thyroid hormone (TH) is a universal regulator of growth, development and metabolism during cold exposure in mammals. In zebrafish (Danio rerio), TH regulates locomotor performance and metabolism during cold acclimation. The influence of TH on locomotor performance may be via its effect on metabolism or, as has been shown in mammals, by modulating muscle phenotypes. Our aim was to determine whether TH influences muscle phenotypes in zebrafish, and whether this could explain changes in swimming capacity in response to thermal acclimation. We used propylthiouracil and iopanoic acid to induce hypothyroidism in zebrafish over a 3-week acclimation period to either 18 or 28°C. To verify that physiological changes following hypothyroid treatment were in fact due to the action of TH, we supplemented hypothyroid fish with 3,5-diiodothryronine (T2) or 3,5,3′-triiodothyronine (T3). Cold-acclimated fish had significantly greater sustained swimming performance (Ucrit) but not burst speed. Greater Ucrit was accompanied by increased tail beat frequency, but there was no change in tail beat amplitude. Hypothyroidism significantly decreased Ucrit and burst performance, as well as tail beat frequency and SERCA activity in cold-acclimated fish. However, myofibrillar ATPase activity increased in cold-acclimated hypothyroid fish. Hypothyroid treatment also decreased mRNA concentrations of myosin heavy chain fast isoforms and SERCA 1 isoform in cold-acclimated fish. SERCA 1 mRNA increased in warm-acclimated hypothyroid fish, and SERCA 3 mRNA decreased in both cold- and warm-acclimated hypothyroid fish. Supplementation with either T2 or T3 restored Ucrit, burst speed, tail beat frequency, SERCA activity and myosin heavy chain and SERCA 1 and 3 mRNA levels of hypothyroid fish back to control levels. We show that in addition to regulating development and metabolism in vertebrates, TH also regulates muscle physiology in ways that affect locomotor performance in fish. We suggest that the role of TH in modulating SERCA1 expression during cold exposure may have predisposed it to regulate endothermic thermogenesis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3