Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung

Author:

Bellusci S.1,Grindley J.1,Emoto H.1,Itoh N.1,Hogan B.L.1

Affiliation:

1. Department of Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2175, USA.

Abstract

During mouse lung morphogenesis, the distal mesenchyme regulates the growth and branching of adjacent endoderm. We report here that fibroblast growth factor 10 (Fgf10) is expressed dynamically in the mesenchyme adjacent to the distal buds from the earliest stages of lung development. The temporal and spatial pattern of gene expression suggests that Fgf10 plays a role in directional outgrowth and possibly induction of epithelial buds, and that positive and negative regulators of Fgf10 are produced by the endoderm. In transgenic lungs overexpressing Shh in the endoderm, Fgf10 transcription is reduced, suggesting that high levels of SHH downregulate Fgf10. Addition of FGF10 to embryonic day 11.5 lung tissue (endoderm plus mesenchyme) in Matrigel or collagen gel culture elicits a cyst-like expansion of the endoderm after 24 hours. In Matrigel, but not collagen, this is followed by extensive budding after 48–60 hours. This response involves an increase in the rate of endodermal cell proliferation. The activity of FGF1, FGF7 and FGF10 was also tested directly on isolated endoderm in Matrigel culture. Under these conditions, FGF1 elicits immediate endodermal budding, while FGF7 and FGF10 initially induce expansion of the endoderm. However, within 24 hours, samples treated with FGF10 give rise to multiple buds, while FGF7-treated endoderm never progresses to bud formation, at all concentrations of factor tested. Although exogenous FGF1, FGF7 and FGF10 have overlapping activities in vitro, their in vivo expression patterns are quite distinct in relation to early branching events. We conclude that, during early lung development, localized sources of FGF10 in the mesoderm regulate endoderm proliferation and bud outgrowth.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 540 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3