Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis

Author:

Bellusci S.1,Furuta Y.1,Rush M.G.1,Henderson R.1,Winnier G.1,Hogan B.L.1

Affiliation:

1. Department of Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2175, USA.

Abstract

Branching morphogenesis of the embryonic lung requires interactions between the epithelium and the mesenchyme. Previously, we reported that Sonic hedgehog (Shh) transcripts are present in the epithelium of the developing mouse lung, with highest levels in the terminal buds. Here, we report that transcripts of mouse patched (Ptc), the homologue of a Drosophila gene encoding a putative transmembrane protein required for hedgehog signaling, are expressed at high levels in the mesenchyme adjacent to the end buds. To investigate the function of SHH in lung development, Shh was overexpressed throughout the distal epithelium, using the surfactant protein-C (SP-C)-enhancer/promoter. Beginning around 16.5 dpc, when Shh and Ptc RNA levels are normally both declining, this treatment caused an increase in the ratio of interstitial mesenchyme to epithelial tubules in transgenic compared to normal lungs. Transgenic newborn mice die soon after birth. Histological analysis of the lungs at the light and electron microscope level shows an abundance of mesenchyme and the absence of typical alveoli. In vivo BrdU labeling indicates that Shh overexpression results in increased mesenchymal and epithelial cell proliferation at 16.5 and 17.5 dpc. However, analysis of CC-10 and SP-C expression reveals no significant inhibition in the differentiation of proximal and distal epithelial cells. The expression of genes potentially regulated by SHH was also examined. No difference could be observed between transgenic and control lungs in either the level or distribution of Bmp4, Wnt2 and Fgf7 RNA. By contrast, Ptc is clearly upregulated in the transgenic lung. These results thus establish a role for SHH in lung morphogenesis, and suggest that SHH normally regulates lung mesenchymal cell proliferation in vivo.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 334 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3