Phase change and the regulation of trichome distribution in Arabidopsis thaliana

Author:

Telfer A.1,Bollman K.M.1,Poethig R.S.1

Affiliation:

1. Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA.

Abstract

Higher plants pass through several phases of shoot growth during which they may produce morphologically distinct vegetative structures. In Arabidopsis thaliana this phenomenon is apparent in the distribution of trichomes on the leaf surface. Leaves produced early in rosette development lack trichomes on their abaxial (lower) surface, leaves produced later have trichomes on both surfaces, and leaves in the inflorescence (bracts) may have few or no trichomes on their adaxial (upper) surface. Here we describe some of the factors that regulate this distribution pattern. We found that the timing of abaxial trichome production and the extent to which bracts lack adaxial trichomes varies in different ecotypes. The production of abaxial trichomes appears to be regulated by the age, rather than the size of the plant. This conclusion is based on the observation that mutations that affect either the rate (altered meristem programming1) or onset (paused) of leaf initiation respectively increase or decrease the number of leaves that lack abaxial trichomes, but have only a minor effect on the time at which the first leaf with abaxial trichomes is produced. The production of abaxial trichomes is coordinated with the reproductive development of the shoot as this trait is delayed by photoperiodic conditions and some mutations that delay flowering. The loss of adaxial trichomes is likely to be a consequence of floral induction, and is accelerated by terminal flower1-10, a mutation that accelerates inflorescence development. We demonstrate that gibberellins promote trichome production in Arabidopsis and present evidence indicating that abaxial trichome production is regulated by both the level of a trichome inducer and the competence of the abaxial epidermis to respond to this inducer.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 208 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3