An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal

Author:

Wagner Kay-Uwe1,Boulanger Corinne A.2,Henry MaLinda D.1,Sgagias Magdalene1,Hennighausen Lothar3,Smith Gilbert H.2

Affiliation:

1. Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Rm. 8009, Omaha, NE 68198-6805, USA

2. Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10, Room 8B07, 9000 Rockville Pike, Bethesda, MD 20892-1750, USA

3. Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bldg. 8, Rm. 107, Bethesda, MD 20892-0822, USA

Abstract

Mammary gland biologists have long assumed that differentiated secretory epithelial cells undergo programmed cell death at the end of lactation and that the alveolar compartment is reconstituted from undifferentiated precursor cells in subsequent pregnancies. It is generally agreed that the remodeled gland in a parous animal resembles that of a mature virgin at the morphological level. However, several physiological differences have been noted in comparing the responses of mammary epithelia from nulliparous versus parous females to hormonal stimulation and carcinogenic agents. We present genetic evidence that an involuted mammary gland is fundamentally different from a virgin gland, despite its close morphological resemblance. This difference results from the formation of a new mammary epithelial cell population that originates from differentiating cells during pregnancy. In contrast to the majority of fully committed alveolar cells, this epithelial population does not undergo cell death during involution or remodeling after lactation. We show that these cells can function as alveolar progenitors in subsequent pregnancies and that they can play an important role in functional adaptation in genetically engineered mice, which exhibit a reversion of a lactation-deficient phenotype in multiparous animals. In transplantation studies, this parity-induced epithelial population shows the capacity for self-renewal and contributes significantly to the reconstitution of the resulting mammary outgrowth (i.e. ductal morphogenesis and lobulogenesis). We propose that this parity-induced population contributes importantly to the biological differences between the mammary glands of parous and nulliparous females.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3