Affiliation:
1. Department of Cell Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
Abstract
Knowledge of when and where signaling pathways are activated is crucial for understanding embryonic development. In this study, we have systematically analyzed and compared the signaling pattern of four major pathways by localization of the activated key components β-catenin (Wnt proteins), MAPK (tyrosine kinase receptors/FGF), Smad1 (BMP proteins) and Smad2 (Nodal/activin/Vg1). We have determined semi-quantitatively the distribution of these components at 18 consecutive stages in Xenopus development, from early blastula to tailbud stages, by immunofluorescence on serial cryosections. The image obtained is that of very dynamic and widespread activities, with very few inactive regions. Signaling fields can vary from large gradients to restricted areas with sharp borders. They do not respect tissue boundaries. This direct visualization of active signaling verifies several predictions inferred from previous functional data. It also reveals unexpected signal patterns, pointing to some poorly understood aspects of early development. In several instances, the patterns strikingly overlap, suggesting extensive interplay between the various pathways. To test this possibility, we have manipulated maternal β-catenin signaling and determined the effect on the other pathways in the blastula embryo. We found that the patterns of P-MAPK, P-Smad1 and P-Smad2 are indeed strongly dependent on β-catenin at this stage. supplementary material: Supplementary Information
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Reference84 articles.
1. Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C. and De Robertis, E. M. (2000). Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development127, 1173-1183.
2. Amaya, E., Musci, T. J. and Kirschner, M. W. (1991). Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell66, 257-270.
3. Ataliotis, P., Symes, K., Chou, M. M., Ho, L. and Mercola, M. (1995). PDGF signalling is required for gastrulation of Xenopus laevis. Development121, 3099-3110.
4. Baker, J. C., Beddington, R. S. and Harland, R. M. (1999). Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev.13, 3149-3159.
5. Behrens, J. (2000). Cross-regulation of the Wnt signalling pathway: a role of MAP kinases. J. Cell Sci.113, 911-919.
Cited by
153 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献