Smad4is essential for epiblast scaling and morphogenesis after implantation, but nonessential prior to implantation in the mouse

Author:

Kruger Robin E.,Frum Tristan,Brumm A. Sophie,Hickey Stephanie L.,Niakan Kathy K.ORCID,Aziz Farina,Shammami Marcelio A.,Roberts Jada G.,Ralston AmyORCID

Abstract

AbstractBone Morphogenic Protein (BMP) signaling plays an essential and highly conserved role in axial patterning in embryos of many externally developing animal species. However, in mammalian embryos, which develop inside the mother, early development includes an additional stage known as preimplantation. During preimplantation, the epiblast lineage is segregated from the extraembryonic lineages that enable implantation and developmentin utero. Yet, the requirement for BMP signaling in mouse preimplantation is imprecisely defined. We show that, in contrast to prior reports, BMP signaling (as reported by SMAD1/5/9 phosphorylation) is not detectable until implantation, when it is detected in the primitive endoderm – an extraembryonic lineage. Moreover, preimplantation development appears normal following deletion of maternal and zygoticSmad4,an essential effector of BMP signaling. In fact, mice lacking maternalSmad4are viable. Finally, we uncover a new requirement for zygoticSmad4in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extraembryonic cell types drives epiblast morphogenesis post-implantation.Summary StatementGene expression, gene deletion, and pathway visualization evidence show thatSmad4-dependent signaling is first active after mouse embryo implantation, when it promotes epiblast morphogenesis non-cell autonomously.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3