Pitx2cpatterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions

Author:

Liu Chengyu1,Liu Wei1,Palie Jennifer1,Lu Mei Fang1,Brown Nigel A.2,Martin James F.1

Affiliation:

1. Alkek Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 Holcombe Blvd, Houston, TX 77030, USA

2. Department of Anatomy and Developmental Biology, St. George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 ORE, UK

Abstract

Inactivation of the left-right asymmetry gene Pitx2 has been shown, in mice, to result in right isomerism with associated defects that are similar to that found in humans. We show that the Pitx2c isoform is expressed asymmetrically in a presumptive secondary heart field within the branchial arch and splanchnic mesoderm that contributes to the aortic sac and conotruncal myocardium. Pitx2c was expressed in left aortic sac mesothelium and in left splanchnic and branchial arch mesoderm near the junction of the aortic sac and branchial arch arteries. Mice with an isoform-specific deletion of Pitx2c had defects in asymmetric remodeling of the aortic arch vessels. Fatemapping studies using a Pitx2 cre recombinase knock-in allele showed that daughters ofPitx2-expressing cells populated the right and left ventricles,atrioventricular cushions and valves and pulmonary veins. In Pitx2mutant embryos, descendents of Pitx2-expressing cells failed to contribute to the atrioventricular cushions and valves and the pulmonary vein,resulting in abnormal morphogenesis of these structures. Our data provide functional evidence that the presumptive secondary heart field, derived from branchial arch and splanchnic mesoderm, patterns the forming outflow tract and reveal a role for Pitx2c in aortic arch remodeling. Moreover, our findings suggest that a major function of the Pitx2-mediated left right asymmetry pathway is to pattern the aortic arches, outflow tract and atrioventricular valves and cushions.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3