Renoguanylin stimulates apical CFTR translocation and decreases HCO3− secretion through PKA activity in the Gulf toadfish (Opsanus beta)

Author:

Ruhr Ilan M.1ORCID,Schauer Kevin L.1ORCID,Takei Yoshio2ORCID,Grosell Martin1

Affiliation:

1. Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, Florida, USA

2. Department of Marine Bioscience, The Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan

Abstract

The guanylin peptides – guanylin, uroguanylin, and renoguanylin (RGN) – are endogenously produced hormones in teleost fish enterocytes that are activators of guanylyl cyclase-C (GC-C) and are potent modulators of intestinal physiology, particularly in seawater teleosts. Most notably, they reverse normal net ion-absorbing mechanisms that are vital to water absorption, an important process for seawater teleost survival. The role of guanylin-peptide stimulation of the intestine remains unclear, but it is hypothesized to facilitate the removal of solids from the intestine by providing fluid to enable their removal by peristalsis. The present study uses one member of these peptides – RGN – to provide evidence for the prominent role that protein kinase A (PKA) plays in mediating the effects of guanylin-peptide stimulation in the posterior intestine of the Gulf toadfish (Opsanus beta). Protein kinase G is shown to not mediate the intracellular effects of RGN, despite previous evidence showing that GC-C activation leads to higher cyclic guanosine monophosphate formation. RGN is shown to reverse the absorptive short-circuit current and increase conductance in the Gulf toadfish intestine. These effects are correlated to increased trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel to the apical membrane, which are negated by PKA inhibition. Moreover, RGN decreases HCO3− secretion, likely by limiting the exchange activity of SLC26a6 (a HCO3−/Cl− antiporter), a reduction that is enhanced by PKA inhibition. RGN seems to alter PKA activity in the posterior intestine to recruit CFTR to the apical membrane and reduce HCO3− secretion.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3