Mechanisms of guanylin action on water and ion absorption at different regions of seawater eel intestine

Author:

Ando Masaaki1,Wong Marty K. S.1,Takei Yoshio1

Affiliation:

1. Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

Abstract

Guanylin (GN) inhibited water absorption and short-circuit current ( Isc) in seawater eel intestine. Similar inhibition was observed after bumetanide, and the effect of bumetanide was abolished by GN or vice versa, suggesting that both act on the same target, Na+-K+-2Cl cotransporter (NKCC), which is a key player for the Na+-K+-Cl transport system responsible for water absorption in marine teleost intestine. However, effect of GN was always greater than that of bumetanide: 10% greater in middle intestine (MI) and 40% in posterior intestine (PI) for Isc, and 25% greater in MI and 34% in PI for water absorption. After treatment with GN, Isc decreased to zero, but 20–30% water absorption still remained. The remainder may be due to the Cl/HCO3 exchanger and Na+-Cl cotransporter (NCC), since inhibitors for these transporters almost nullified the remaining water absorption. Quantitative PCR analysis revealed the presence of major proteins involved in water absorption; the NKCC2β and AQP1 genes whose expression was markedly upregulated after seawater acclimation. The SLC26A6 (anion exchanger) and NCCβ genes were also expressed in small amounts. Consistent with the inhibitors' effect, expression of NKCC2β was MI > PI, and that of NCCβ was MI << PI. The present study showed that GN not only inhibits the bumetanide-sensitive Na+-K+-Cl transport system governed by NKCC2β, but also regulates unknown ion transporters different from GN-insensitive SLC26A6 and NCC. A candidate is cystic fibrosis transmembrane conductance regulator Cl channel, as demonstrated in mammals, but its expression is low in eel intestine, and its role may be minor, as indicated by the small effect of its inhibitors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3