Year-round recordings of behavioural and physiological parameters reveal the survival strategy of a poorly insulated diving endotherm during the Arctic winter

Author:

Grémillet David1,Kuntz Grégoire12,Woakes Anthony J.3,Gilbert Caroline12,Robin Jean-Patrice1,Le Maho Yvon1,Butler Patrick J.3

Affiliation:

1. Centre d'Ecologie et Physiologie Energétiques, Centre National de la Recherche Scientifique, 23 Rue Becquerel, 67087 Strasbourg Cedex 02,France

2. French Polar Institute Paul-Emile Victor, Technopôle Brest-Iroise,BP 75-29280 Plouzané, France

3. School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract

SUMMARY Warm-blooded diving animals wintering in polar regions are expected to show a high degree of morphological adaptation allowing efficient thermal insulation. In stark contrast to other marine mammals and seabirds living at high latitudes, Arctic great cormorants Phalacrocorax carbo have very limited thermal insulation because of their partly permeable plumage. They nonetheless winter in Greenland, where they are exposed to very low air and water temperatures. To understand how poorly insulated diving endotherms survive the Arctic winter, we performed year-round recordings of heart rate,dive depth and abdominal temperature in male great cormorants using miniature data loggers. We also examined the body composition of individuals in the spring. Abdominal temperatures and heart rates of birds resting on land and diving showed substantial variability. However, neither hypothermia nor significantly lower heart rate levels were recorded during the winter months. Thus our data show no indication of general metabolic depression in great cormorants wintering in Greenland. Furthermore, great cormorants did not reduce their daily swimming time during the coldest months of the year to save energy; they continued to forage in sub-zero waters for over an hour every day. As birds spent extended periods in cold water and showed no signs of metabolic depression during the Arctic winter, their theoretical energy requirements were substantial. Using our field data and a published algorithm we estimated the daily food requirement of great cormorants wintering in Greenland to be 1170±110 g day-1. This is twice the estimated food requirement of great cormorants wintering in Europe. Great cormorants survive the Arctic winter but we also show that they come close to starvation during the spring, with body reserves sufficient to fast for less than 3 days. Lack of body fuels was associated with drastically reduced body temperatures and heart rates in April and May. Concurrent, intense feeding activity probably allowed birds to restore body reserves. Our study is the first to record ecophysiological parameters in a polar animal on a year-round basis. It challenges the paradigm that efficient thermal insulation is a prerequisite to the colonization of polar habitats by endotherms.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3