Using accelerometers to infer behaviour of cryptic species in the wild

Author:

Benoit Laura,Bonnot Nadège C.,Debeffe Lucie,Grémillet David,Hewison A.J. Mark,Marchand Pascal,Puch Laura,Bonnet Arnaud,Cargnelutti Bruno,Cebe Nicolas,Lourtet Bruno,Coulon Aurélie,Morellet Nicolas

Abstract

AbstractAccelerometery is revolutionising the field of behavioural ecology through its capacity to detect the fine-scale movements of animals resulting from their behaviour. Because it is often difficult to infer the behaviour of wildlife on a continuous basis, particularly for cryptic species, accelerometers potentially provide powerful tools for remote monitoring of their behavioural responses to the environment.The goal of this study was to provide a detailed, calibrated methodology, including practical guidelines, to infer the behaviour of free-ranging animals from acceleration data. This approach can be employed to reliably infer the time budget of species that are difficult to observe in certain environments or at certain times of the day. To this end, we trained several behavioural classification algorithms with accelerometer data obtained on captive roe deer, then validated these algorithms with data obtained on free-ranging roe deer, and finally predicted the time-budgets of a substantial sample of unobserved free-ranging roe deer in a human-dominated landscape.The best classification algorithm was the Random Forest which predicted five behavioural classes with a high overall level of accuracy (≈ 90%). Except for grooming (34-38%), we were able to predict the behaviour of free-ranging roe deer over the course of a day with high accuracy, in particular, foraging head down, running, walking and immobile (68-94%). Applied to free-ranging individuals, the classification allowed us to estimate, for example, that roe deer spent about twice as much time foraging head-down, walking or running during dawn and dusk than during daylight or night-time.By integrating step by step calibration and validation of accelerometer data prior to application in the wild, our approach is transferable to other free-ranging animals for predicting key behaviours in cryptic species.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3