Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development

Author:

Harrelson Zachary1,Kelly Robert G.1,Goldin Sarah N.1,Gibson-Brown Jeremy J.123,Bollag Roni J.34,Silver Lee M.3,Papaioannou Virginia E.1

Affiliation:

1. Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA

2. Department of Biology, Washington University, St Louis, MO 63130, USA

3. Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA

4. Institute of Molecular Genetics and Development, Medical College of Georgia,Augusta, GA 30912, USA

Abstract

Tbx2 is a member of the T-box transcription factor gene family,and is expressed in a variety of tissues and organs during embryogenesis. In the developing heart, Tbx2 is expressed in the outflow tract, inner curvature, atrioventricular canal and inflow tract, corresponding to a myocardial zone that is excluded from chamber differentiation at 9.5 days post coitus (dpc). We have used targeted mutagenesis in mice to investigate Tbx2 function. Mice heterozygous for a Tbx2 null mutation appear normal but homozygous embryos reveal a crucial role for Tbx2 during cardiac development. Morphological defects are observed in development of the atrioventricular canal and septation of the outflow tract. Molecular analysis reveals that Tbx2 is required to repress chamber differentiation in the atrioventricular canal at 9.5 dpc. Analysis of homozygous mutants also highlights a role for Tbx2 during hindlimb digit development. Despite evidence that TBX2 negatively regulates the cell cycle control genes Cdkn2a, Cdkn2b and Cdkn1a in cultured cells, there is no evidence that loss of Tbx2 function during mouse development results in increased levels of p19ARF, p16INK4a,p15INK4b or p21 expression in vivo, nor is there evidence for a genetic interaction between Tbx2 and p53.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 258 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3