Affiliation:
1. Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014
2. Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York 10032
Abstract
Abstract
The T-box genes comprise an ancient family of putative transcription factors conserved across species as divergent as Mus musculus and Caenorhabditis elegans. All T-box gene products are characterized by a novel 174-186amino acid DNA binding domain called the T-box that was first discovered in the polypeptide products of the mouse T locus and the Drosophila melanogaster optomotor-blind gene. Earlier studies allowed the identification of five mouse T-box genes, T, Tbx1-3, and Tbr1, that all map to different chromosomal locations and are expressed in unique temporal and spatial patterns during embryogenesis. Here, we report the discovery of three new members of the mouse T-box gene family, named Tbx4, Tbx5, and Tbx6. Two of these newly discovered genes, Tbx4 and Tbx5, were found to be tightly linked to previously identified T-box genes. Combined results from phylogenetic, linkage, and physical mapping studies provide a picture for the evolution of a T-box subfamily by unequal crossing over to form a two-gene cluster that was duplicated and dispersed to two chromosomal locations. This analysis suggests that Tbx4 and Tbx5 are cognate genes that diverged apart from a common ancestral gene during early vertebrate evolution.
Publisher
Oxford University Press (OUP)
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献