Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat

Author:

Coan Philip M.1ORCID,Hummel Oliver2,Diaz Ana Isabel Garcia3,Barrier Marjorie1,Alfazema Neza1,Norsworthy Penny J.4,Pravenec Michal5,Petretto Enrico46,Huebner Norbert278,Aitman Timothy J.13ORCID

Affiliation:

1. Centre for Genomic and Experimental Medicine & Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, UK

2. Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany

3. Department of Medicine, Imperial College London, London, UK

4. MRC Clinical Sciences Centre, Imperial College London, London, UK

5. Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic

6. Duke-NUS Medical School, Singapore, Republic of Singapore

7. DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany

8. Charité-Universitätsmedizin, Berlin, Germany

Abstract

We previously mapped hypertension-related insulin resistance quantitative trait loci (QTL) to rat chromosomes 4, 12 and 16 using adipocytes from F2 crosses between spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats, and subsequently identified Cd36 as the gene underlying the chromosome 4 locus. The identity of the chromosome 12 and 16 genes remains unknown. To identify whole body phenotypes associated with the chromosome 12 and 16 linkage regions, we generated and characterised new congenic strains, with WKY donor segments introgressed onto an SHR genetic background, for the chromosome 12 and 16 linkage regions. We found a >50% increase in insulin sensitivity in both the chromosome 12 and 16 strains. Blood pressure and left ventricular weight were reduced in the two congenic strains consistent with the congenic segments harboring SHR genes for insulin resistance, hypertension and cardiac hypertrophy. Integrated genomic analysis, using physiological and whole genome sequence data across 42 rat strains, identified variants within the congenic regions in Upk3bl, RGD1565131 and AABR06087018.1 that were associated with blood pressure, cardiac mass and insulin sensitivity. Quantitative trait transcript analysis across 29 recombinant inbred strains showed correlation between expression of Hspb1, Zkscan5 and Pdgfrl respectively with adipocyte volume, systolic blood pressure and cardiac mass. Comparative genome analysis showed marked enrichment of orthologues for human GWAS-associated genes for insulin resistance within the syntenic regions of both the chromosome 12 and 16 congenic intervals. Our study defines whole body phenotypes associated with the SHR chromosome 12 and 16 insulin resistance QTLs, identifies candidate genes for these SHR QTLs and finds human orthologues of rat genes in these regions that associate with related human traits. Further study of these genes in the congenic strains will lead to robust identification of the underlying genes and cellular mechanisms.

Funder

AstraZeneca

European Research Council

Czech Science Foundation

The Helmholtz Alliance

Medical Research Council

European Union

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3