Affiliation:
1. The Francis Crick Institute 1 Molecular Cell Biology of Autophagy , , London NW1 1AT , UK
2. The Francis Crick Institute 2 Proteomics Science Technology Platform , , London NW1 1AT , UK
3. MRC Laboratory of Molecular Biology 3 , Cambridge CB2 0QH , UK
Abstract
ABSTRACT
ATG9A, a transmembrane protein of the core autophagy pathway, cycles between the Golgi, endosomes and a vesicular compartment. ATG9A was recently shown to act as a lipid scramblase, and this function is thought to require its interaction with another core autophagy protein, ATG2A, which acts as a lipid transfer protein. Together, ATG9A and ATG2A are proposed to function to expand the growing autophagosome. However, ATG9A is implicated in other pathways including membrane repair and lipid droplet homeostasis. To elucidate other ATG9A interactors within the autophagy pathway, or interactors beyond autophagy, we performed an interactome analysis through mass spectrometry. This analysis revealed a host of proteins involved in lipid synthesis and trafficking, including ACSL3, VPS13A and VPS13C. Furthermore, we show that ATG9A directly interacts with VPS13A and forms a complex that is distinct from the ATG9A–ATG2A complex.
Funder
European Molecular Biology Organization
Cancer Research UK
Medical Research Council
Wellcome Trust
European Research Council
Seventh Framework Programme
Francis Crick Institute
Publisher
The Company of Biologists
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献