Interaction between ESCRT-III proteins and the yeast SERINC homolog Tms1

Author:

Kölling Ralf1ORCID

Affiliation:

1. Institut für Lebensmittelwissenschaft und Biotechnologie, Fg. Hefegenetik und Gärungstechnologie, Universität Hohenheim , 70599 Stuttgart , Germany

Abstract

Abstract The endosomal sorting complex required for transport (ESCRT)-III is involved in membrane remodeling and abscission during intraluminal vesicle (ILV) formation at endosomes. Our data now suggest that ESCRT-III function could be connected to lipid remodeling of the endosomal membrane. This notion is based on our finding that ESCRT-III proteins bind to the yeast serine incorporator (SERINC) homolog Tms1. Human SERINC3 and SERINC5 are HIV-1 restriction factors and have been shown to act as scramblases, flipping phospholipids between membrane leaflets. Due to the extraordinarily high sequence conservation between Tms1 and human SERINCs, it is likely that Tms1 is also a scramblase. While deletion of TMS1 had only a moderate effect on the sorting of multivesicular body (MVB) cargo proteins, the simultaneous deletion of a component of the Vps55/Vps68 complex led to a strong synergistic phenotype. This pronounced synergism suggests that Tms1 and Vps55/Vps68 perform a parallel function at endosomes. Vps55/Vps68 loosely resembles Tms1 in its overall structure. Thus, it is possible that Vps55/Vps68 is also a scramblase. Since both Vps55 and Tms1 physically interact with ESCRT-III proteins, we propose that the recruitment of a scramblase plays a crucial role in ESCRT-III-dependent membrane remodeling at endosomes.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3