Affiliation:
1. California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
Abstract
To support tissue and organ development, cells transition between epithelial and mesenchymal states. Here we investigated how mesoderm cells change state in Drosophila embryos and whether fibroblast growth factor (FGF) signaling plays a role. During gastrulation, presumptive mesoderm cells invaginate, undergo an epithelial-to-mesenchymal state transition (EMT) and migrate upon the ectoderm. Our data show that EMT is a prolonged process in which adherens junctions progressively decrease in number throughout the mesoderm cells’ migration. FGF influences adherens junction number and promotes mesoderm cell division, which we propose decreases cell-cell attachments to support slow EMT while retaining collective cell movement. We also found that, at the completion of migration, cells form a monolayer and undergo a reverse mesenchymal-to-epithelial transition (MET). FGF activity leads to accumulation of beta-integrin Myospheroid basally and cell polarity factor Bazooka apically within mesoderm cells, thereby reestablishing apicobasal cell polarity in an epithelialized state in which cells express both E-Cadherin and N-Cadherin. In summary, FGF plays a dynamic role in supporting mesoderm cell development to ensure collective mesoderm cell movements as well as proper differentiation of mesoderm cell types.
Funder
National Institute of General Medical Sciences
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献