An olfactory-specific glutathione-S-transferase in the sphinx moth Manduca sexta

Author:

Rogers M.E.1,Jani M.K.1,Vogt R.G.1

Affiliation:

1. Department of Biology, University of South Carolina, Columbia, SC 29208, USA.

Abstract

Insect antennae have a primary function of detecting odors including sex pheromones and plant volatiles. The assumption that genes uniquely expressed in these antennae have an olfactory role has led to the identification of several genes that are integral components of odorant transduction. In the present study, differential display polymerase chain reaction (ddPCR) was used to isolate 25 antennal-specific mRNAs from the male sphinx moth Manduca sexta. Northern blot analyses revealed that one clone, designated G7-9, was antennal-specific and was highly enriched in male antennae relative to female antennae. In situ hybridization indicated that G7-9 expression was restricted to a spatial domain of the olfactory epithelium occupied exclusively by sex-pheromone-sensitive olfactory sensilla. Amino acid homology and phylogenetic analyses identified G7-9 as a glutathione-S-transferase (GST); we have named the full-length clone GST-msolf1. GSTs are known to function primarily in the detoxification of noxious compounds. Spectrophotometric and chromatographic analyses of total GST activity indicate that the endogenous GSTs of male and female antennae can modify trans-2-hexenal, a plant-derived green leaf aldehyde known to stimulate the olfactory system of M. sexta. The restricted localization of GST-msolf1 to sex-pheromone-sensitive sensilla, the fact that the sex pheromone of M. sexta consists of a complex mixture of aldehyde components, and the observation that antennal GSTs can modify an aldehyde odorant suggest that GST-msolf1 may have a role in signal termination. In the light of the more commonly observed role of GSTs in xenobiotic metabolism, we propose that GST-msolf1 may play a dual role of protecting the olfactory system from harmful xenobiotics and inactivating aldehyde odorants, especially components of the M. sexta sex pheromone.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3