A mechanism for branchial acid excretion in marine fish: identification of multiple Na+/H+ antiporter (NHE) isoforms in gills of two seawater teleosts

Author:

Claiborne J.B.1,Blackston C.R.1,Choe K.P.1,Dawson D.C.1,Harris S.P.1,Mackenzie L.A.1,Morrison-Shetlar A.I.1

Affiliation:

1. Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA. JBClaiborne@GaSou.edu

Abstract

Both Na+/H+ exchange and the electrogenic extrusion of H+ via an H+-ATPase have been postulated to drive acid excretion across the branchial epithelium of fishes. While the H+-ATPase/Na+ channel system appears to be the predominant mechanism in some freshwater species, it may play a reduced role in seawater and brackish-water animals, where high external Na+ concentrations may thermodynamically favor Na+/H+ exchange driven by a Na+/H+ antiporter (NHE). In this study, we used molecular and immunological methods to assess the role of NHE isoforms in the branchial epithelium of the marine long-horned sculpin (Myoxocephalus octodecimspinosus) and the euryhaline killifish (Fundulus heteroclitus).Northern blot analysis of RNA probed with the human NHE-1 BamHI fragment suggested the presence of homologous gill NHE mRNA in sculpin. RT-PCR on gill RNA isolated from sculpin recovering from metabolic acidosis provided evidence for two distinct NHE isoforms; one with 76 % amino acid homology to mammalian NHE-2, and another 92 % homologous to trout erythrocytic beta-NHE. Killifish also have transcripts with 91 % homology to beta-NHE. Immunological detection using monoclonal antibodies for mammalian NHE-1 revealed a protein antigenically similar to this isoform in the gills of both species. Metabolic acidosis caused an approximately 30-fold decrease in expression of the NHE-1-like protein in sculpin. We speculate that beta-NHE in the gills plays the intracellular ‘housekeeping’ roles described for mammalian NHE-1. During systemic acidosis, apical gill NHE-2 (which is sensitive to external amiloride and low [Na+]) in parallel with a dramatic suppression of basolateral NHE-1 activity enhances net capdelta H+ transfers to the water.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference45 articles.

1. Molecular structure and regulation of vertebrate Na+/H+exchangers;Bianchini;J. Exp. Biol,1994

2. Immunocytochemical characterization of Na(+)-H+ exchanger isoform NHE-1 in rabbit kidney;Biemesderfer;Am. J. Physiol,1992

3. A rapid alkaline extraction procedure for screening recombinant plasmid DNA;Birnboim;Nucleic Acids Res,1979

4. Na+/H+exchangers, NHE-1 and NHE-3, of rat intestine. Expression and localization;Bookstein;J. Clin. Invest,1994

5. Cloning and expressing a cyclic AMP-activated Na+/H+exchanger; evidence that the cytoplasmic domain mediates hormonal regulation;Borgese;Proc. Natl. Acad. Sci. USA,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3