Are the effects of catch-and-release angling evident in changes to mRNA abundances related to metabolism, acid–base regulation and stress in lake trout (Salvelinus namaycush) gills?

Author:

DePasquale Simon W1ORCID,Howell Bradley E1,Navarroli Giulio1,Jeffries Kenneth M2,Cooke Steven J3,Wijenayake Sanoji1,Jeffrey Jennifer D1,Hasler Caleb T1

Affiliation:

1. The University of Winnipeg Department of Biology, , 515 Portage Avenue, Winnipeg, MB, Canada R3B 2E9

2. University of Manitoba Department of Biological Sciences, , 50 Sifton Road, Winnipeg, MB, Canada R3T 2N2

3. Carleton University Department of Biology and Institute of Environmental and Interdisciplinary Science, , 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6

Abstract

Abstract Catch-and-release (C&R) angling is a conservation-oriented practice intended to reduce the impact recreational angling has on fish populations. Even though most recreationally angled fish are released, little is known about how C&R angling impacts fish at the cellular or tissue level. As the first to explore the impacts of C&R angling on mRNA abundances, our study aimed to identify how the stress of angling influenced metabolism, acid–base regulation and cellular stress in the gills of lake trout (Salvelinus namaycush). Because gills are responsible for metabolic gas exchange, are crucial sites of acid–base homeostasis and respond to stressors quickly, we hypothesized that the relative mRNA abundance of genes related to these three physiological processes would be altered after angling. We took gill samples of live lake trout at 0, 2 or 48 h after fish were angled by rod and reel, and then used quantitative PCR (qPCR) to measure the relative abundance of nine candidate mRNA transcripts. Heat shock protein 70 (hsp70) mRNA levels significantly increased over 5-fold 2 h after angling, indicating a potential activation of a cytoprotective response. However, contrary to our hypothesis, we observed no change in the relative mRNA abundance of genes related to metabolism or acid–base regulation in response to C&R angling within a 48-h period. As C&R angling can negatively impact fish populations, further use of transcript-level studies will allow us to understand the impact C&R has on specific tissues and improve our knowledge of how C&R influences overall fish health.

Funder

University of Winnipeg Graduate Studies Scholarship

The Northern Scientific Training Program

NSERC Canada Graduate Scholarship

NSERC Undergraduate Student Research Award

Natural Sciences and Engineering Research Council

Manitoba Fish and Wildlife Enhancement Fund

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3