Templates and anchors: neuromechanical hypotheses of legged locomotion on land

Author:

Full R.J.1,Koditschek D.E.1

Affiliation:

1. Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720-3140, USA. rjfull@socrates.berkeley.edu

Abstract

Locomotion results from complex, high-dimensional, non-linear, dynamically coupled interactions between an organism and its environment. Fortunately, simple models we call templates have been and can be made to resolve the redundancy of multiple legs, joints and muscles by seeking synergies and symmetries. A template is the simplest model (least number of variables and parameters) that exhibits a targeted behavior. For example, diverse species that differ in skeletal type, leg number and posture run in a stable manner like sagittal- and horizontal-plane spring-mass systems. Templates suggest control strategies that can be tested against empirical data. Templates must be grounded in more detailed morphological and physiological models to ask specific questions about multiple legs, the joint torques that actuate them, the recruitment of muscles that produce those torques and the neural networks that activate the ensemble. We term these more elaborate models anchors. They introduce representations of specific biological details whose mechanism of coordination is of interest. Since mechanisms require controls, anchors incorporate specific hypotheses concerning the manner in which unnecessary motion or energy from legs, joints and muscles is removed, leaving behind the behavior of the body in the low-degree-of-freedom template. Locating the origin of control is a challenge because neural and mechanical systems are dynamically coupled and both play a role. The control of slow, variable-frequency locomotion appears to be dominated by the nervous system, whereas during rapid, rhythmic locomotion, the control may reside more within the mechanical system. Anchored templates of many-legged, sprawled-postured animals suggest that passive, dynamic self-stabilization from a feedforward, tuned mechanical system can reject rapid perturbations and simplify control. Future progress would benefit from the creation of a field embracing comparative neuromechanics.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3