Plasticity of feedback inputs in the apteronotid electrosensory system

Author:

Bastian J.1

Affiliation:

1. Department of Zoology, University of Oklahoma, Norman, OK 73019, USA. jbastian@ou.edu

Abstract

Weakly electric fish generate an electric field surrounding their body by means of an electric organ typically located within the trunk and tail. Electroreceptors scattered over the surface of the body encode the amplitude and timing of the electric organ discharge (EOD), and central components of the electrosensory system analyze the information provided by the electroreceptor afferents. The electrosensory system is used for electrolocation, for the detection and analysis of objects near the fish which distort the EOD and for electrocommunication. Since the electric organ is typically located in the tail, any movement of this structure relative to the rest of the body alters the EOD field, resulting in large changes in receptor afferent activity. The amplitude of these reafferent stimuli can exceed the amplitudes of near-threshold electrolocation signals by several orders of magnitude. This review summarizes recent studies of the South American weakly electric fish Apteronotus leptorhynchus aimed at determining how the animals differentiate self-generated or reafferent electrosensory stimuli from those that are more behaviorally relevant. Cells within the earliest stages of central electrosensory processing utilize an adaptive filtering technique which allows the system preferentially to attenuate reafferent as well as other predictable patterns of sensory input without degrading responses to more novel stimuli. Synaptic plasticity within the system underlies the adaptive component of the filter and enables the system to learn to reject new stimulus patterns if these become predictable. A Ca2+-mediated form of postsynaptic depression contributes to this synaptic plasticity. The filter mechanism seen in A. leptorhynchus is surprisingly similar to adaptive filters described previously in mormyrid weakly electric fish and in elasmobranchs, suggesting that this mechanism may be a common feature of sensory processing systems.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3