Plasticity in an electrosensory system. II. Postsynaptic events associated with a dynamic sensory filter

Author:

Bastian J.1

Affiliation:

1. Department of Zoology, University of Oklahoma, Norman 73019,USA.

Abstract

1. This report summarizes studies of the changes in postsynaptic potentials that occur as pyramidal cells within the primary electrosensory processing nucleus learn to reject repetitive patterns of afferent input. The rejection mechanism employs "negative image inputs" that oppose or cancel electroreceptor afferent inputs or patterns of pyramidal hyperpolarization or depolarization caused by intracellular current injection. Feedback pathways carrying descending electrosensory as well as other types of information provide the negative image inputs. This study focuses on the role of a directly descending projection from a second-order electrosensory nucleus the nucleus praeeminentialis (nP), which provides excitatory and inhibitory inputs to the apical dendrites of electrosensory lateral line lobe (ELL) pyramidal cells. 2. Electrical stimulation of the pathway linking the nP to the ELL was used to activate descending inputs to the pyramidal cells. Pyramidal cell activity was typically increased due to stimulation of this pathway. Tetanic stimulation of the descending pathway paired with either electrosensory stimuli that inhibited pyramidal cells, or hyperpolarizing current injection, increased the excitation provided by subsequent stimulation of this pathway. Pairing tetanic stimulation with excitatory electrosensory stimuli or depolarizing current injection had the opposite effect. Subsequent activation of the descending pathway inhibited pyramidal cells. 3. Intracellular recordings showed that the increased firing of pyramidal cells evoked by stimulation of the descending pathway following tetanic stimulation paired with postsynaptic hyperpolarization resulted from larger amplitude and longer-duration excitatory postsynaptic potentials (EPSPs). The shift in the effect of activity in this descending pathway to providing net inhibitory input to the pyramidal cells after paired presynaptic activity and postsynaptic depolarization probably results from the potentiation of inhibitory postsynaptic potentials (IPSPs). The EPSP and IPSPs evoked by activity in this descending pathway can be continuously adjusted in amplitude, thereby counterbalancing patterns of pyramidal cell excitation and inhibition received from the periphery with the result that repetitive patterns of afferent activity are strongly attenuated.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3