Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography

Author:

Tomanek L.1,Somero G.N.1

Affiliation:

1. Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950-3094, USA. tomanekl@leland.stanford.edu

Abstract

Heat stress sufficient to cause cellular damage triggers the heat-shock response, the enhanced expression of a group of molecular chaperones called heat-shock proteins (hsps). We compared the heat-shock responses of four species of marine snails of the genus Tegula that occupy thermal niches differing in absolute temperature and range of temperature. We examined the effects of short-term heat stress and thermal acclimation on the synthesis of hsps of size classes 90, 77, 70 and 38 kDa by measuring incorporation of (35)S-labeled methionine and cysteine into newly synthesized proteins in gill tissue. Temperatures at which enhanced synthesis of hsps first occurred (T(on)), temperatures of maximal induction of hsp synthesis (T(peak)) and temperatures at which hsp synthesis was heat-inactivated (T(off)) were lowest in two low-intertidal to subtidal species from the temperate zone, T. brunnea and T. montereyi, intermediate in a mid- to low-intertidal species of the temperate zone, T. funebralis, and highest in a subtropical intertidal species from the Gulf of California, T. rugosa. Synthesis of hsps and other classes of protein by T. brunnea and T. montereyi was heat-inactivated at temperatures commonly encountered by T. funebralis during low tides on warm days. In turn, protein synthesis by T. funebralis was blocked at the upper temperatures of the habitat of T. rugosa. Acclimation of snails to 13 degrees C, 18 degrees C and 23 degrees C shifted T(on) and T(peak) for certain hsps, but did not affect T(off). The heat-shock responses of field-acclimatized snails were generally reduced in comparison with those of laboratory-acclimated snails. Overall, despite the occurrence of acclimatory plasticity in their heat-shock responses, genetically fixed differences in T(on), T(peak) and T(off) appear to exist that reflect the separate evolutionary histories of these species and may play important roles in setting their thermal tolerance limits and, thereby, their biogeographic distribution patterns.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3