Microhabitat acclimatization alters sea anemone–algal symbiosis and thermal tolerance across the intertidal zone

Author:

Ruggeri Maria1ORCID,Million Wyatt C.1,Hamilton Lindsey1,Kenkel Carly D.1

Affiliation:

1. Department of Biological Sciences University of Southern California Los Angeles California USA

Abstract

AbstractContemporary symbioses in extreme environments can give an insight into mechanisms that stabilize species interactions during environmental change. The intertidal sea anemone, Anthopleura elegantissima, engages in a nutritional symbiosis with microalgae similar to tropical coral, but withstands more intense environmental fluctuations during tidal inundations. In this study, we compare baseline symbiotic traits and their sensitivity to thermal stress within and among anemone aggregations across the intertidal using a laboratory‐based tank experiment to better understand how fixed genotypic and plastic environmental effects contribute to the successful maintenance of this symbiosis in extreme habitats. High intertidal anemones had lower baseline symbiont‐to‐host cell ratios under control conditions, but their symbionts had higher baseline photosynthetic efficiency compared to low intertidal anemone symbionts. Symbiont communities were identical across all samples, suggesting that shifts in symbiont density and photosynthetic performance could be an acclimatory mechanism to maintain symbiosis in different environments. Despite lower baseline symbiont‐to‐host cell ratios, high intertidal anemones maintained greater symbiont‐to‐host cell ratios under heat stress compared with low intertidal anemones, suggesting greater thermal tolerance of high intertidal holobionts. However, the thermal tolerance of clonal anemones acclimatized to different zones was not explained by tidal height alone, indicating additional environmental variables contribute to physiological differences. Host genotype significantly influenced anemone weight, but only explained a minor proportion of variation among symbiotic traits and their response to thermal stress, further implicating environmental history as the primary driver of holobiont tolerance. These results indicate that this symbiosis is highly plastic and may be able to acclimatize to climate change over ecological timescales, defying the convention that symbiotic organisms are more susceptible to environmental stress.

Funder

Wrigley Institute for Environmental Studies, University of Southern California

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3