Lactate metabolism and glucose turnover in the subterranean crustacean niphargus virei during post-hypoxic recovery

Author:

Hervant F.1,Garin D.1,Mathieu J.1,Freminet A.1

Affiliation:

1. Hydrobiologie et Ecologie Souterraines (ESA CNRS 5023), Physiologie des Regulations Energetiques, Cellulaires et Moleculaires (UMR CNRS 5578) and Energetique et Cardiologie Cellulaire, Universite Claude Bernard-Lyon I, F-69622 Villeurbanne Ce.

Abstract

Glucose and lactate metabolism were studied in a hypoxia-resistant subterranean crustacean, Niphargus virei, using an injection of l-[U-14C]lactate and tracer d-[6-3H]glucose either in normoxic conditions or after a 24 h exposure to severe hypoxic. Post-hypoxic animals (H animals) were compared with two treatment groups of normoxic animals. In the first normoxic group (NLL animals), animals were simultaneously injected with labelled and unlabelled lactate to obtain a lactate load similar to that of H animals. In the second normoxic group (N, control animals), animals were only injected with labelled lactate. During a 24 h recovery period, the incorporation of 14C and 3H into glycogen, lactate, glucose, amino acids, lipids and CO2 was measured. During recovery, glucose turnover rate was enhanced in H and depressed in NLL compared with N animals. However, when energy expenditure was taken into account, the changes were due only to a reduction of glucose turnover rate by lactate load. It was concluded that gluconeogenesis was not the main source of glyconeogenesis. Equivalent lactate loading in NLL and H animals resulted in an equivalent enhancement (fivefold) of lactate utilization in both groups when energy expenditure was taken into account. Lactate label incorporation appeared later in glycogen than in glucose, but remained high 24 h after the injection. Since glucose is mainly an extracellular metabolite, this observation may be consistent with the hypothesis of two distinct sites for glycogen restoration in hypogean crustaceans: a gluconeogenic organ (a liver equivalent) and a glyconeogenic organ (a muscle equivalent). The oxidative pathways of glucose and lactate were depressed in post-hypoxic N. virei and to a lesser extent in the NLL group. Since there is no evidence of marked protein utilization, it is postulated that, during recovery, repayment of the O2 debt relies on an increase in lipid utilization. During recovery from severe hypoxia or after a lactate load, the subterranean N. virei appeared to implement a strategy of lactate removal quite different from that observed in epigean crustaceans, favouring lactate-supported gluco- and glyconeogenesis and rapid glycogen replenishment instead of rapid lactate removal via oxidative pathways.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference32 articles.

1. Anaerobic metabolism during anoxia in the burrowing shrimp Calocaris macandreae Bell (Crustacea: Thalassinidea);Anderson;Comp. Biochem. Physiol,1994

2. Glycogenesis and glyconeogenesis in skeletal muscle: effects of pH and hormones;Bonen;Am. J. Physiol,1990

3. Regulation of anaerobic ATP-generating pathways in trout fast-twitch skeletal muscle;Dobson;Am. J. Physiol,1987

4. Turnover rates of glucose and lactate in rainbow trout during acute hypoxia;Dunn;Can. J. Zool,1987

5. The recovery from anaerobic metabolism in invertebrates;Ellington;J. Exp. Zool,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3