Living in warmer more acidic oceans retards physiological recovery from tidal emersion in the velvet swimming crab Necora puber (L.)

Author:

Rastrick Samuel P.S.1,Calosi Piero2,Calder-Potts Ruth3,Foggo Andy2,Nightingale Gregory2,Widdicombe Stephen3,Spicer John I.2

Affiliation:

1. University of Southampton, United Kingdom;

2. Plymouth University, United Kingdom;

3. Plymouth Marine Laboratory, United Kingdom

Abstract

Abstract The distribution patterns of many species in the intertidal zone are partly determined by their ability to survive and recover from tidal emersion. During emersion most crustaceans experience gill-collapse impairing gas-exchange. Such collapse generates a state of hypoxemia and a hypercapnia-induced respiratory acidosis, leading to hyperlactaemia and metabolic acidosis. However, how such physiological responses to emersion are modified by prior exposure to elevated CO2 and temperature combinations, indicative of future climate change scenarios, is not known. We therefore investigated key physiological responses of velvet swimming crabs, Necora puber, kept for 14 days at one of four pCO2/temperature treatments (400 μatm/10 °C, 1000 μatm/10 °C, 400 μatm/15 °C, 1000 μatm/15 °C), to experimental emersion and recovery. Pre-exposure to elevated pCO2 and temperature increased pre-emersion bicarbonate ion concentrations [HCO3-], increasing resistance to short periods of emersion (90 min). However, there was still a significant acidosis following 180 min emersion in all treatments. The recovery of extracellular acid base via the removal of extracellular pCO2 (PCO2) and lactate after emersion was significantly retarded by exposure to both elevated temperature and pCO2. If elevated environmental pCO2 and temperature lead to slower recovery after emersion, then some predominantly subtidal species that also inhabit the low to mid shore, such as N. puber, may have a reduced physiological capacity to retain their presence in the low intertidal zone, ultimately affecting their bathymetric range of distribution, as well as the structure, and diversity of intertidal assemblages.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference83 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3