Invertebrate paraxial locomotory appendages: design, deformation and control

Author:

Wootton R.J.1

Affiliation:

1. School of Biological Sciences, Exeter University, Exeter EX4 4PS, UK. R.J.Wootton@exeter.ac.uk

Abstract

Some principles governing the design of invertebrate paired propulsive appendages are discussed, with particular reference to the extent to which information encoded in their skeletal structure determines their instantaneous shape in locomotion. The hydrostatic paired fins of some cephalopods and marine gastropods, polychaete parapodia and onychophoran lobopodia rely entirely on musculature for shape control. The deformations of walking limbs, though still under muscular control, are strongly influenced by the nature and sequence of movement of the joints. Limbs adapted for walking in air are effectively point-loaded, and their rigid components need to resist axial forces as well as bending and torsional moments. Aquatic walking limbs have little axial loading, while swimming appendages and wings experience only bending and torsional moments, and can exploit these to assist in the deformations that are necessary to gain force asymmetry between half-strokes. Swimming appendages normally employ both muscles and drag, but the wings of insects lack internal muscles, and their changes in shape are largely complex aeroelastic responses to the constantly changing aerodynamic and inertial loads, moderated by muscles inserted at the base. For illustration, wings modelled as thin shells with flexible hinge-lines are used to investigate how transverse distal flexion, essential for controlling the angle of attack in the upstroke, is remotely controlled by the indirect flight muscles.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3