The “elongate chelicera problem”: A virtual approach in an extinct pterygotid sea scorpion from a 3D kinematic point of view

Author:

Schmidt Michel1234ORCID,Melzer Roland R.2345

Affiliation:

1. Yunnan Key Laboratory for Palaeobiology Yunnan University Kunming China

2. MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment Yunnan University Kunming China

3. Bavarian State Collection of Zoology Bavarian Natural History Collections München Germany

4. Ludwig‐Maximilians‐University Munich Faculty of Biology Biocentre Munich Germany

5. GeoBio‐Center Ludwig‐Maximilians‐Universität München München Germany

Abstract

AbstractChelicerae, distinctive feeding appendages in chelicerates, such as spiders, scorpions, or horseshoe crabs, can be classified based on their orientation relative to the body axis simplified as either orthognathous (parallel) or labidognathous (inclined), exhibiting considerable diversity across various taxa. Among extinct chelicerates, sea scorpions belonging to the Pterygotidae represent the only chelicerates possessing markedly elongated chelicerae relative to body length. Despite various hypotheses regarding the potential ecological functions and feeding movements of these structures, no comprehensive 3D kinematic investigation has been conducted yet to test these ideas. In this study, we generated a comprehensive 3D model of the pterygotid Acutiramus, making the elongated right chelicera movable by equipping it with virtual joint axes for conducting Range of Motion analyses. Due to the absence in the fossil record of a clear indication of the chelicerae orientation and their potential lateral or ventral movements (vertical or horizontal insertion of joint axis 1), we explored the Range of Motion analyses under four distinct kinematic settings with two orientation modes (euthygnathous, klinogathous) analogous to the terminology of the terrestrial relatives. The most plausible kinematic setting involved euthygnathous chelicerae being folded ventrally over a horizontal joint axis. This configuration positioned the chelicera closest to the oral opening. Concerning the maximum excursion angle, our analysis revealed that the chela could open up to 70°, while it could be retracted against the basal element to a maximum of 145°. The maximum excursion in the proximal joint varied between 55° and 120° based on the insertion and orientation. Our findings underscore the utility of applying 3D kinematics to fossilized arthropods for addressing inquiries on functional ecology such as prey capture and handling, enabling insights into their possible behavioral patterns. Pterygotidae likely captured and processed their prey using the chelicerae, subsequently transporting it to the oral opening with the assistance of other prosomal appendages.

Funder

Yunnan University

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3