Thermal stress causes DNA damage and mortality in a tropical insect

Author:

Lubawy Jan1ORCID,Daburon Virginie2,Chowański Szymon1,Słocińska Małgorzata1,Colinet Hervé2ORCID

Affiliation:

1. Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland

2. ECOBIO – UMR 6553, Université de Rennes 1, CNRS, Rennes, France

Abstract

Cold tolerance is considered an important factor determining geographic distribution of insects. We've previously shown that despite tropical origin, cockroach Gromphadorinha coquereliana is capable of surviving exposures to cold. However, freezing tolerance of this species had not yet been examined. Low temperature is known to alter membranes integrity in insects but whether chilling or freezing compromises DNA integrity remains a matter of speculation. In the present study, we subjected the G. coquereliana adults to freezing to determine their supercooling point (SCP) and evaluated whether the cockroaches were capable of surviving partial and complete freezing. Next, we conducted single cell gel electrophoresis assay (SCGE) to determine whether heat, cold and freezing altered haemocytes DNA integrity. The SCP of this species was high and around -4.76°C, which is within typical range of freezing-tolerant species. Most cockroaches survived one day after partial ice formation (20% mortality), but died progressively in the next few days after cold stress (70% mortality after 4 days). One day after complete freezing, most insects died (70% mortality), and after 4 days, 90% of them had succumbed. The SCGE assays showed substantial level of DNA damage in haemocytes. When cockroaches were heat-stressed, the level of DNA damage was similar to that observed in the freezing treatment; though all heat-stressed insects survived. The study shows that G. coquereliana can surprisingly be considered as moderately freezing-tolerant species, and for first time that extreme low temperature stress can affect DNA integrity, suggesting that this cockroach may possess an efficient DNA repair system.

Funder

Narodowe Centrum Nauki

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3