Ca2+ elevations disrupt interactions between intraflagellar transport and the flagella membrane in Chlamydomonas

Author:

Fort Cecile1,Collingridge Peter1,Brownlee Colin12,Wheeler Glen1ORCID

Affiliation:

1. Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK

2. School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK

Abstract

ABSTRACT The movement of ciliary membrane proteins is directed by transient interactions with intraflagellar transport (IFT) trains. The green alga Chlamydomonas has adapted this process for gliding motility, using retrograde IFT motors to move adhesive glycoproteins in the flagella membrane. Ca2+ signalling contributes directly to the gliding process, although uncertainty remains over the mechanism through which it acts. Here, we show that flagella Ca2+ elevations initiate the movement of paused retrograde IFT trains, which accumulate at the distal end of adherent flagella, but do not influence other IFT processes. On highly adherent surfaces, flagella exhibit high-frequency Ca2+ elevations that prevent the accumulation of paused retrograde IFT trains. Flagella Ca2+ elevations disrupt the IFT-dependent movement of microspheres along the flagella membrane, suggesting that Ca2+ acts by directly disrupting an interaction between retrograde IFT trains and flagella membrane glycoproteins. By regulating the extent to which glycoproteins on the flagella surface interact with IFT motor proteins on the axoneme, this signalling mechanism allows precise control of traction force and gliding motility in adherent flagella.

Funder

Biotechnology and Biological Sciences Research Council

European Research Council

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3