Flexible clap and fling in tiny insect flight

Author:

Miller Laura A.1,Peskin Charles S.1

Affiliation:

1. Department of Mathematics, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and Courant Institute of Mathematical Sciences, New York University, New York, NY 27701, USA

Abstract

SUMMARYOf the insects that have been filmed in flight, those that are 1 mm in length or less often clap their wings together at the end of each upstroke and fling them apart at the beginning of each downstroke. This `clap and fling'motion is thought to augment the lift forces generated during flight. What has not been highlighted in previous work is that very large forces are required to clap the wings together and to fling the wings apart at the low Reynolds numbers relevant to these tiny insects. In this paper, we use the immersed boundary method to simulate clap and fling in rigid and flexible wings. We find that the drag forces generated during fling with rigid wings can be up to 10 times larger than what would be produced without the effects of wing–wing interaction. As the horizontal components of the forces generated during the end of the upstroke and beginning of the downstroke cancel as a result of the motion of the two wings, these forces cannot be used to generate thrust. As a result, clap and fling appears to be rather inefficient for the smallest flying insects. We also add flexibility to the wings and find that the maximum drag force generated during the fling can be reduced by about 50%. In some instances, the net lift forces generated are also improved relative to the rigid wing case.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vortices and Forces in Biological Flight: Insects, Birds, and Bats;Annual Review of Fluid Mechanics;2024-01-19

2. Colloquium : Miniature insect flight;Reviews of Modern Physics;2023-12-21

3. Computational Physics of Insect Flight — Aerial Locomotion and Navigation;Journal of the Physical Society of Japan;2023-12-15

4. Computational fluid–structure interaction framework for passive feathering and cambering in flapping insect wings;International Journal for Numerical Methods in Fluids;2023-11-29

5. Fluid–structure interactions of bristled wings: the trade-off between weight and drag;Journal of The Royal Society Interface;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3